Wioletta Grzenda
ARTICLE

(Polish) PDF

ABSTRACT

High unemployment rates are observed among people beginning job careers nowadays. The aim of the work is to identify demographic and socio-economic factors influencing the unemployment duration in this age group. In this research, Bayesian semiparametric Cox model for individual data has been used. The advantage of survival model is the possibility of the analysis of the impact of selected independent variables on unemployment duration. The Bayesian approach with a priori distribution makes the use of out of the sample knowledge possible. The model has been estimated using Markov chain Monte Carlo method with ARMS algorithm.

KEYWORDS

unemployment, semiparametric Cox model, Bayesian inference, Markov chain Monte Carlo method

REFERENCES

1] Balcerowicz-Szkutnik M., Dyduch M., Szkutnik W., (2010), Wybrane modele i analizy rynku pracy: uwarunkowania rynku pracy i wzrostu gospodarczego, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, Katowice.

[2] Biggeri L., Bini M., Grilli L., (2001), The Transition from University to Work: a Multilevel Approach to the Analysis of the Time to Obtain the First Job, Journal of the Royal Statistical Society, 164, 293-305.

[3] Blossfeld H.P., Rohwer G., (2002), Techniques of Event History Modeling, New Approaches to Causal Analysis, Lawrence Erlbaum Associates, New Jersey.

[4] Bolstad W.M., (2007), Introduction to Bayesian Statistics, Wiley & Sons, New Jersey.

[5] Collier W., (2003), The Impact of Demographic and Individual Heterogeneity on Unemployment Duration: A Regional Study, Studies in Economics, 0302.

[6] Congdon P., (2007), Bayesian Statistical Modelling, Wiley & Sons, New York.

[7] Cox D.R., (1972), Regression Models and Life Tables (with discussion), Journal of the Royal Statistical Society, 34, 187-220.

[8] Cox D.R., (1975), Partial Likelihood, Biometrika, 62, 269-276.

[9] Drobniˇc S., Frątczak E., (2001), Employment Patterns of Married Women in Poland, w: Blossfeld HP., Drobniˇc S. (red.), Careers of Couples in Contemporary Societies, Oxford University Press, 281-306.

[10] Geweke J., (1992), Evaluating the Accuracy of Sampling-based Approaches to Calculating Posterior Moments, w: Bernardo J., Berger J., Dawiv A., Smith, A., Bayesian Statistics, 4, 169-193.

[11] Gilks W., Best N., Tan K., (1995), Adaptive Rejection Metropolis Sampling with Gibbs Sampling, Applied Statistics, 44, 455-472.

[12] Grzenda W., (2011), Wykorzystanie modeli drzew decyzyjnych oraz regresji logistycznej do analizy czynników demograficznych oraz społeczno-ekonomicznych wpływających na szanse znalezienia pracy, Studia Ekonomiczne, 95, 271-277.

[13] GUS, (2010), Monitoring Rynku Pracy, Wejście ludzi młodych na rynek pracy.

[14] Ibrahim J.G., Chen M.-H., Sinha D., (2001), Bayesian Survival Analysis, Springer-Verlag, New York.

[15] Kryńska E. (red.), (2004), Polski rynek pracy – niedopasowania strukturalne, IPiSS, Warszawa.

[16] Kwiatkowski E., (2007), Bezrobocie, Podstawy teoretyczne, WN, Warszawa.

[17] Lancaster T., (1979), Econometric Methods for the Duration of Unemployment, Econometrica, 47, 939-956.

[18] Merrick J.R., Soyer R., Mazzuchi A., (2002), A Bayesian Semi-parametric Analysis of the Reliability and Maintenance of Machine Tools, Technometrics 48, 58-69.

[19] Osiewalski J., (2001), Ekonometria bayesowska w zastosowaniach, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.

[20] Pipień M., (2006), Wnioskowanie bayesowskie w ekonometrii finansowej, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.

[21] Sinha D., Dey D.K., (1997), Semiparametric Bayesian Analysis of Survival Data, Journal of the American Statistical Association, 92, 1195-1212.

[22] Sinha D., Ibrahim J.G., Chen, M.-H., (2003), A Bayesian Justification of Cox’s Partial Likelihood, Biometrika, 90(3), 629-641.

[23] Socha M., Sztanderska U., (2000), Strukturalne podstawy bezrobocia w Polsce, PWN, Warszawa.

[24] Szreder M., (1994), Informacje a priori w klasycznej i bayesowskiej estymacji modeli regresji, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0